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Abstract

Most conventional Policy Gradient Reinforcement Learning (PGRL) al-

gorithms neglect (or do not explicitly make use of) a term in the average

reward gradient with respect to the policy parameter. That term involves

the derivative of the stationary state distribution which corresponds to the

sensitivity of its distribution to changes in the policy parameter. Although

the bias introduced by this omission can be reduced by setting the forgetting

rate γ for the value functions close to 1, these algorithms do not permit γ to

be set exactly at γ = 1. In this paper, we propose a method for estimating

the Log Stationary state distribution Derivative (LSD) as a useful form of

the derivative of the stationary state distribution through backward Markov

chain formulation and a temporal difference learning framework. A new pol-

icy gradient (PG) framework with an LSD is also proposed, in which the

average reward gradient can be estimated by setting γ = 0, so it becomes

unnecessary to learn the value functions. We also test the performance of
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the proposed algorithms using simple benchmark tasks and show that these

can improve the performances of existing PG methods.

1 Introduction

Policy Gradient Reinforcement Learning (PGRL) is a popular family of algorithms

in Reinforcement Learning (RL). PGRL improves a policy parameter to maximize

the average reward (also called the expected return) by using the average reward

gradients with respect to the policy parameter, which are called the Policy Gradi-

ents (PGs) (Gullapalli, 2000; Williams, 1992; Kimura and Kobayashi, 1998; Baird

and Moore, 1999; Sutton et al., 2000; Baxter and Bartlett, 2001; Konda and Tsit-

siklis, 2003; Peters and Schaal, 2006). However, most conventional PG algorithms

for infinite-horizon problems neglect (or do not explicitly make use of) the term

associated with the derivative of the stationary (state) distribution in the PGs

with the exception of Ng et al. (2000), since to date there is not an efficient

algorithm to estimate this derivative. This derivative is an indicator of how sen-

sitive the stationary distribution is to changes in the policy parameter. While

the biases introduced by this omission can be reduced by using a forgetting (or

discounting1) rate “γ” for the value functions close to 1, that tends to increase

the variance of the PG estimates and for γ = 1 the variance can become infinite

which violates the conditions of these algorithms. This tradeoff makes it difficult

to find an appropriate γ in practice. Furthermore, while the solution to discounted

reinforcement learning is well-defined if the optimal control solution can be per-

fectly represented by the policy, this is no longer true in the case where function

approximation is employed. For approximations of the policies, the solution will

1Note that the parameter γ has two different meanings: discounting and forgetting. γ is
sometimes interpreted as a discounting rate to define the objective function. On the other hand,
the role of γ can be regarded as the forgetting rate to enforce a horizon change for the approach
of Baxter and Bartlett (2001), where the objective function is the average reward. That is, while
the discounting rate is seen as a part of the problem, the forgetting rate is a part of algorithm.
Since we focus on the average reward as the infinite-horizon problem, we use the name the
“forgetting” rate for γ in this article.
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always be determined by the start-state distributions and, thus, is in general an

ill-defined problem. Average reward RL on the other hand is a well-posed problem

as it only depends on the stationary distribution.

Here, we propose a new PG framework with estimating the derivative of the

logarithmic stationary state distribution (Log Stationary distribution Derivative

or LSD) as an alternative and useful form of the derivative of the stationary

distribution for estimating the PG2. It is our main result and contribution of

this paper that a method for estimating the LSD is derived through backward

Markov chain formulation and a temporal difference learning method. Then, the

learning agent estimates the LSD instead of estimating the value functions in this

PG framework. Furthermore, the realization of LSD estimation will open other

possibilities for RL. Especially, it will enable us to implement the state of the

art natural gradient learning for RL (Morimura et al., 2008a, 2009) which was

reported to be effective especially in the randomly synthesized large-scale MDPs.

The Fisher information matrix as the Riemannian metric defining this natural

gradient included the LSD.

This paper is an extended version of an earlier technical report (Morimura

et al., 2007), including new results, and is organized as follows. In Section 2, we

review the conventional PGRL methods and describe a motivation to estimate

LSD. In Section 3, we propose an LSLSD(λ) algorithm for the estimation of LSD

by a Least Squares temporal difference method based on the backward Markov

chain formulation. In Section 4, the LSLSD(λ)-PG algorithm is instantly derived

as a novel PG algorithm utilizing LSLSD(λ). We also propose a baseline function

for LSLSD(λ)-PG which decreases the variance of the PG estimate. To verify

the performances of the proposed algorithms, numerical results for simple Markov

Decision Processes (MDPs) are shown in Section 5. In Section 6, we review

existing (stationary) state distribution derivative estimating and average reward

2While the log stationary distribution derivative with respect to the policy parameter is
sometimes referred to as the likelihood ratio gradient or score function, we call it the LSD in this
paper.
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PG methods. In Section 7, we give a summary and discussion. We also suggest

other significant possibilities brought by the realization of the LSD estimation.

2 Policy Gradient Reinforcement Learning

We briefly review the conventional PGRL methods and present the motivation to

estimate the LSD. A discrete time MDP with finite sets of states s ∈ S and actions

a ∈ A is defined by a state transition probability p(s+1 | s, a) ≡ Pr(s+1 | s, a) and

a (bounded) reward function r+1 = r(s, a, s+1), where s+1 is the state followed

by the action a at the state s and r+1 is the observed immediate reward at s+1

(Bertsekas, 1995; Sutton and Barto, 1998). The state s+k and the action a+k

denote a state and an action after k time steps from the state s and the action a,

respectively, and backwards for −k. The decision-making rule follows a stochastic

policy π(s, a; θ) ≡ Pr(a | s, θ), parameterized by θ ∈ Rd. We assume the policy

π(s, a; θ) is always differentiable with respect to θ. We also posit the following

assumption:

Assumption 1 The Markov chain M(θ) = {S,A, p, π, θ} is ergodic (irreducible

and aperiodic) for all policy parameters θ. Then there exists a unique stationary

state distribution dM(θ)(s) = limk→∞ Pr(s+k = s | M(θ)) > 0 which is independent

of the initial state and satisfies the recursion

dM(θ)(s) =
∑

s−1∈S

∑

a−1∈A

pM(θ)(s, a−1 | s−1)dM(θ)(s−1), (1)

where pM(θ)(s, a−1 | s−1) ≡ π(s−1, a−1; θ)p(s | s−1, a−1).

The goal of PGRL is to find a policy parameter θ∗ that maximizes the time

average of immediate rewards called the average reward or expected return:

η(θ) ≡ lim
K→∞

1

K
EM(θ)

{ K∑

k=1

r+k | s
}
,
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where EM(θ) denotes the expectation over the Markov chain M(θ). Under As-

sumption 1, the average reward is independent of the initial state s and can be

shown to be equal to (Bertsekas, 1995)

η(θ) = EM(θ){r(s, a, s+1)}

=
∑

s∈S

∑

a∈A

∑

s+1∈S

dM(θ)(s)π(s, a; θ)p(s+1 | s, a)r(s, a, s+1)

=
∑

s∈S

∑

a∈A

dM(θ)(s)π(s, a; θ)r̄(s, a), (2)

where r̄(s, a) =
∑

s+1∈S
p(s+1 | s, a)r(s, a, s+1) does not depend on the policy

parameter. The policy gradient RL algorithms update the policy parameters θ in

the direction of the gradient of the average reward η(θ) with respect to θ so that

∇θη(θ) ≡
[
∂η(θ)

∂θ1

, . . . ,
∂η(θ)

∂θd

]>

,

where > denotes the transpose. This derivative is often referred to as the policy

gradient (PG) for short. Using Eq.2, the PG is directly determined to be

∇θη(θ) =
∑

s∈S

∑

a∈A

dM(θ)(s)π(s, a; θ)
(
∇θln dM(θ)(s) + ∇θln π(s, a; θ)

)
r̄(s, a). (3)

However, since the derivation of the gradient of the log stationary state distri-

bution ∇θln dM(θ)(s) is nontrivial, the conventional PG algorithms (Baxter and

Bartlett, 2001; Kimura and Kobayashi, 1998) utilize an alternative representation

of the PG as 3

∇θη(θ) =
∑

s∈S

∑

a∈A

dM(θ)(s)π(s, a; θ)∇θln π(s, a; θ)Qπ
γ(s, a)

+ (1 − γ)
∑

s∈S

dM(θ)(s)∇θln dM(θ)(s)V π
γ (s), (4)

3We give this derivation in Appendix.
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where

Qπ
γ(s, a) ≡ lim

K→∞
EM(θ){

K∑

k=1

γk−1r+k | s, a},

V π
γ (s) ≡ lim

K→∞
EM(θ){

K∑

k=1

γk−1r+k | s}

are the cumulative rewards defined with forgetting rate γ ∈ [0, 1), known as

the state-action and state value functions, respectively (Sutton and Barto, 1998).

Since the contribution of the second term in Eq.4 shrinks as γ approaches 1 (Baxter

and Bartlett, 2001), the conventional algorithms omitted the second term and

approximated the PG as a biased estimate by taking γ ≈ 1: the PG estimate was

composed of only the first term in Eq.4. Although the bias introduced by this

omission shrinks as γ approaches to 1, the variance of the estimate becomes larger

(Baxter and Bartlett, 2001; Baxter et al., 2001). In addition, these algorithms

prohibit γ from being set exactly at 1 though the bias disappears in the limit of

γ → 1.

In this paper, we propose an estimation approach for the log stationary dis-

tribution derivative (LSD), ∇θln dM(θ)(s). The realization of the LSD estimation

instantly makes an alternative PG approach feasible, which uses Eq.3 for the com-

putation of the PG estimate with the LSD estimate. An important feature is that

this approach does not need to learn either value function, Qπ
γ or V π

γ , and therefore

the resulting algorithms are free from the bias-variance trade-off in the choice of

the forgetting rate γ.

3 Estimation of the Log Stationary Distribution

Derivative (LSD)

In this section, we propose an LSD estimation algorithm based on least squares,

LSLSD(λ). For this purpose, we formulate the backwardness of the ergodic
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Markov chain M(θ), and show that LSD can be estimated on the basis of the tem-

poral difference learning (Sutton, 1988; Bradtke and Barto, 1996; Boyan, 2002).

3.1 Properties of forward and backward Markov chains

According to Bayes’ theorem, a backward probability q of a previous state-action

pair (s−1, a−1) leading to the current state s is given by

q(s−1, a−1 | s) =
p(s | s−1, a−1) Pr(s−1, a−1)∑

s−1∈S

∑
a−1∈A

p(s | s−1, a−1) Pr(s−1, a−1)
.

The posterior q(s−1, a−1 | s) depends upon the prior distribution Pr(s−1, a−1).

When the prior distribution follows a stationary distribution under a fixed policy

π, i.e., Pr(s−1, a−1) = π(s−1, a−1; θ)dM(θ)(s−1), the posterior is called the stationary

backward probability denoted by qB(θ)(s−1, a−1 | s) and satisfies

qB(θ)(s−1, a−1 | s) =
p(s | s−1, a−1)π(s−1, a−1; θ)dM(θ)(s−1)

dM(θ)(s)

=
pM(θ)(s, a−1 | s−1)dM(θ)(s−1)

dM(θ)(s)
. (5)

If a Markov chain follows qB(θ)(s−1, a−1 | s), we call it the backward Markov

chain B(θ) associated with M(θ) following pM(θ)(s, a−1 | s−1). Both Markov

chains—M(θ) and B(θ)—are closely related as described in the following two

propositions:

Proposition 1 Let a Markov chain M(θ) characterized by a transition probability

pM(θ)(s | s−1) ≡ ∑
a−1∈A

pM(θ)(s, a−1 | s−1), which is irreducible and ergodic.

Then the backward Markov chain B(θ) characterized by the backward (stationary)

transition probability qB(θ)(s−1 | s) ≡ ∑
a−1∈A

qB(θ)(s−1, a−1 | s) with respect to

pM(θ) is also ergodic and has the same unique stationary distribution as M(θ):

dM(θ)(s) = dB(θ)(s),
∀s ∈ S, (6)
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where dM(θ)(s) and dB(θ)(s) are the stationary distributions of M(θ) and B(θ),

respectively.

Proof: By multiplying both sides of Eq.5 by dM(θ)(s) and summing over all pos-

sible a−1 ∈ A, we obtain a “detailed balance equations” (MacKay, 2003)

qB(θ)(s−1 | s)dM(θ)(s) = pM(θ)(s | s−1)dM(θ)(s−1),
∀s−1 ∈ S, ∀s ∈ S. (7)

Then
∑

s∈S

qB(θ)(s−1 | s)dM(θ)(s) = dM(θ)(s−1)

holds by summing both sides of Eq.7 over all possible s ∈ S, indicating that (i)

B(θ) has the same stationary distribution as M(θ). By Assumption 1, (i) directly

proves that (ii) B(θ) is irreducible. Eq.7 is reformulated by the matrix notation:

both transition probabilities pM(θ)(s | s−1) and qB(θ)(s−1 | s) are assembled into

PM(θ) and QB(θ), respectively4, and the stationary distribution into dθ:
5

QB(θ) = diag(dθ)
−1P >

M(θ) diag(dθ).

We can easily see that the diagonal components of (PM(θ))
n are equal to those

of (QB(θ))
n for any natural number n. This implies that (iii) B(θ) has the same

aperiodic property as M(θ). Proposition 1 (Eq.6) is directly proven by (i)–(iii)

(Schinazi, 1999). �

Proposition 2 Let the distribution of s−K follow dM(θ)(s) and let f(sk, ak) be an

4The bold QB(θ) has no relationship with the state-action value function Qπ(s, a)
5The function “diag(a)” for a vector a ∈ Rd denotes the diagonal matrix of a, so diag(a) ∈

Rd×d.
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arbitrary function of a state-action pair at time k. Then

EB(θ)

{
K∑

k=1

f(s−k, a−k) | s
}

= EM(θ)

{
K∑

k=1

f(s−k, a−k) | s, dM(θ)(s−K)

}
(8)

= EM(θ)

{
K−1∑

k=0

f(s+k, a+k) | s+K, dM(θ)(s)

}
,

where EB(θ) and EM(θ) are the expectations over the backward and forward Markov

chains, B(θ) and M(θ), respectively, and E{· | dM(θ)(s)} ≡ E{· | Pr(s) = dM(θ)(s)}.

Eq.8 holds even at the limit K → ∞.

Proof: By utilizing the Markov property and substituting Eq.5, we have the

following relationship

qB(θ)(s−1, a−1, ..., s−K, a−K | s)

= qB(θ)(s−1, a−1 | s) · · · qB(θ)(s−K , a−K | s−K+1)

=
pM(θ)(s, a−1 | s−1) · · ·pM(θ)(s−K+1, a−K | s−K)dM(θ)(s−K)

dM(θ)(s)

∝ pM(θ)(s, a−1 | s−1) · · · pM(θ)(s−K+1, a−K | s−K)dM(θ)(s−K).

This directly implies the proposition in the case of finite K. Since the following

equations are derived from Proposition 1, the proposition in the limit case K →

∞ is also instantly proven,

lim
K→∞

EB(θ){f(s−K, a−K) | s} = lim
K→∞

EM(θ){f(s−K, a−K) | s, dM(θ)(s−K)}

=
∑

s∈S

∑

a∈A

π(s, a; θ)dM(θ)(s)f(s, a).

�

Propositions 1 and 2 are significant as they indicate that the samples from the

forward Markov chain M(θ) can be used directly for estimating the statistics of

the backward Markov chain B(θ).
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3.2 Temporal difference learning for LSD from the back-

ward to forward Markov chains

Using Eq.5, the LSD, ∇θln dM(θ)(s), can be decomposed into

∇θln dM(θ)(s) =
1

dM(θ)(s)

∑

s−1∈S

∑

a−1∈A

p(s | s−1, a−1)π(s−1, a−1; θ)dM(θ)(s−1)

{
∇θln π(s−1, a−1; θ) + ∇θln dM(θ)(s−1)

}

=
∑

s−1∈S

∑

a−1∈A

qB(θ)(s−1, a−1 | s){∇θln π(s−1, a−1; θ) + ∇θln dM(θ)(s−1)}

= EB(θ){∇θlnπ(s−1, a−1; θ) + ∇θln dM(θ)(s−1) | s}. (9)

Noting that there exist ∇θln dM(θ)(s) and ∇θln dM(θ)(s−1) in Eq.9, the recursion of

Eq.9 can be rewritten as

∇θln dM(θ)(s) = lim
K→∞

EB(θ)

{
K∑

k=1

∇θln π(s−k, a−k; θ) + ∇θln dM(θ)(s−K) | s
}

. (10)

Eq.10 implies that the LSD of a state s is the infinite-horizon cumulation of the

Log Policy distribution Derivative (LPD), ∇θln π(s, a; θ), along the backward

Markov chain B(θ) from state s. From Eqs. 9 and 10, LSD could be estimated

using an approach which is similar to temporal difference (TD) learning (Sutton,

1988) for the following backward TD-error δ on the backward Markov chain B(θ)

rather than M(θ).

δ(s) ≡ ∇θlnπ(s−1, a−1; θ) + ∇θln dM(θ)(s−1) −∇θln dM(θ)(s),

where the first two terms of the right hand side describe the one-step actual

observation of the policy eligibility and the one-step ahead LSD on B(θ), re-

spectively, while the last term is the current LSD. Interestingly, while the well-

known TD-error for the value-function estimation uses the reward r(s, a, s+1)

on M(θ) (Sutton and Barto, 1998), this TD-error for the LSD estimation uses
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∇θln π(s−1, a−1; θ) on B(θ).

While δ(s) is a random variable, EB(θ){δ(s) | s} = 0 holds for all states s ∈ S,

which comes from Eq.9. This motivates to minimize the mean squares of the back-

ward TD-error, EB(θ){‖δ̂(s)‖2}, for the estimation of LSD6, where δ̂(s) is composed

of the LSD estimate ∇̂θln dM(θ)(s) rather than (exact) LSD ∇θln dM(θ)(s). Here,

‖a‖ denotes the Euclidean norm (a>a)1/2.

With an eligibility decay rate λ ∈ [0, 1] and a back-trace time-step K ∈ N ,

Eq.10 is generalized, where N denotes the set of natural numbers:

∇θln dM(θ)(s) = EB(θ)

{ K∑

k=1

λk−1
{
∇θln π(s−k, a−k; θ)+(1 − λ)∇θln dM(θ)(s−k)

}

+ λK∇θln dM(θ)(s−K) | s
}

.

Accordingly, the backward TD is extended into the backward TD(λ), δλ,K(s),

δλ,K(s) ≡
K∑

k=1

λk−1
{
∇θlnπ(s−k, a−k; θ)+(1 − λ)∇θln dM(θ)(s−k)

}

+ λK∇θln dM(θ)(s−K) −∇θln dM(θ)(s),

where the unbiased property, EB(θ){δλ,K(s) | s} = 0, is still retained. The mini-

mization of EB(θ){‖δ̂λ,K(s)‖2} at λ = 1 and the limit K → ∞ is regarded as the

Widrow-Hoff supervised learning procedure. Even if λ and K are not set in the

above values, the minimization of EB(θ){‖δ̂λ,K(s)‖2} in a large λ ∈ [0, 1) and K

would be less sensitive to a non-Markovian effect as in the case of the conventional

TD(λ) learning for the value functions (Peng and Williams, 1996).

In order to minimize EB(θ){‖δ̂λ,K(s)‖2} as the estimation of the LSD, we need

to gather many samples drawn from the backward Markov chain B(θ). However,

6Actually, the classical least squares approach to EB(θ){‖δ̂(s)‖2} would make the LSD esti-

mate biased, because δ̂(s) has the different time-step LSDs, ∇̂θln dM(θ)(s−1) and ∇̂θln dM(θ)(s).

Instead, EB(θ){ι(s)>δ̂(s)} is minimized for an unbiased LSD estimation, where ι(s) is a instru-
mental variable (Young, 1984; Bradtke and Barto, 1996). Such a detailed discussion is given in

Section 3.3. Before that, we see only EB(θ){‖δ̂(s)‖2} to enhance the readability.
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the actual samples are drawn from a forward Markov chain M(θ). Fortunately,

by using Propositions 1 and 2, we can derive the following exchangeable property:

EB(θ)

{
‖δ̂λ,K(s)‖2

}
=

∑

s∈S

dB(θ)(s) EB(θ)

{
‖δ̂λ,K(s)‖2 | s

}

=
∑

s∈S

dM(θ)(s) EM(θ)

{
‖δ̂λ,K(s)‖2 | s, dM(θ)(s−K)

}

= EM(θ)

{
‖δ̂λ,K(s)‖2 | dM(θ)(s−K)

}
. (11)

In particular, the actual samples can be reused to minimize EB(θ){‖δ̂λ,K(s)‖2},

provided s−K ∼ dM(θ)(s). In real problems, however, the initial state is rarely

distributed according to the stationary distribution dM(θ)(s). To interpolate the

gap between theoretical assumption and realistic applicability, we would need to

adopt either of the following two strategies: (i) K is not set at such a large integer

if λ ≈ 1; (ii) λ is not set at 1 if K ≈ t, where t is the current time-step of the

actual forward Markov chain M(θ).

3.3 LSD estimation algorithm: Least squares on backward

TD(λ) with constraint

In the previous sections, we introduced the theory for estimating LSD by the min-

imization of the mean squares of δ̂λ,K(s) on M(θ), EM(θ){‖δ̂λ,K(s)‖2 | dM(θ)(s−K)}.

However, LSD also has the following constraint derived from
∑

s∈S dM(θ)(s) = 1:

EM(θ){∇θln dM(θ)(s)} =
∑

s∈S

dM(θ)(s)∇θln dM(θ)(s) = ∇θ

∑

s∈S

dM(θ)(s) = 0. (12)

In this section, we propose an LSD estimation algorithm, LSLSD(λ), based on

least squares temporal difference approach (Young, 1984; Bradtke and Barto, 1996;

Boyan, 2002; Lagoudakis and Parr, 2003), which simultaneously attempts to de-

crease the mean squares and satisfy the constraint. We consider the situation

where the LSD estimate ∇̂θln dM(θ)(s) is represented by a linear vector function
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approximator

f(s;Ω) ≡ Ωφ(s), (13)

where φ(s) ∈ Re is a basis function and Ω ≡ [ω1, ...,ωd]
> ∈ Rd×e is an ad-

justable parameter matrix, and we assume that the optimal parameter Ω∗ sat-

isfies ∇θln dM(θ)(s) = Ω∗φ(s). If the estimator cannot represent the LSD ex-

actly, LSLSD(λ) would behave as suggested by Sutton (1988); Peng and Williams

(1996), which means the estimation error for the LSD would get smaller as the

value of λ ∈ [0, 1) approaches 1. This will be confirmed in our numerical experi-

ments (Section 5).

For simplicity, we focus only on the i-th element θi of the policy parameter θ,

denoting f(s;ωi) ≡ ω>
i φ(s), ∇θi

ln π(s, a; θ) ≡ ∂ ln π(s, a; θ)/∂θi, and δ̂λ,K(s,ωi)

as the i-th element of δ̂λ,K(s,Ω). Accordingly, the objective function to be mini-

mized is given by

ε(ωi) =
1

2
EM(θ){δ̂λ,K(s;ωi)

2 | dM(θ)(s−K)} +
1

2
EM(θ){f(s;ωi)}2, (14)

where the second term of the right side comes from the constraint of Eq.127. Thus,

the derivative is

∇ωi
ε(ωi) = EM(θ){δ̂λ,K(s;ωi) ∇ωi

δ̂λ,K(s;ωi) | dM(θ)(s−K)} + ∇ωi
EM(θ){f(s;ωi)},

(15)

where

δ̂λ,K(s;ωi) =

K∑

k=1

λk−1∇θi
ln π(s−k, a−k; θ) + ω>

i ∇ωi
δ̂λ,K(s;ωi)

7While LSLSD(λ) weighs the two objectives equally, we can instantly extend it to the problem

minimizing EM(θ){‖δ̂λ(x)‖2 | dπ(s−K)} subject to the constraint of Eq.12 with the Lagrange
multiplier method.
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and

∇ωi
δ̂λ,K(s;ωi) = (1 − λ)

K∑

k=1

λk−1φ(s−k) + λKφ(s−K) − φ(s).

Although the conventional least squares method aims to find the parameter sat-

isfying ∇ωi
ε(ωi) = 0 as the true parameter ω∗

i , it induces estimation bias if a

correlation exists between the error δ̂λ,K(s;ω∗
i ) and its derivative ∇ωi

δ̂λ,K(s;ω∗
i )

concerning the first term of the right-hand side in Eq.14. That is, if

EM(θ){δ̂λ,K(s;ω∗
i ) ∇ωi

δ̂λ,K(s;ω∗
i ) | dM(θ)(s−K)} 6= 0,

∇ωi
ε(ω∗

i ) 6= 0 holds because ∇ωi
EM(θ){f(s;ω∗

i )} comprised in the second term of

the left-hand side in Eq.14 is always a zero vector due to Eq.12 and f(s;ω∗
i ) =

∇θi
ln dM(θ)(s). Since this correlation exists in general RL tasks, we apply the

instrumental variable method to eliminate the bias (Young, 1984; Bradtke and

Barto, 1996). This requires that ∇ωi
δ̂λ,K(s;ωi) be replaced by the instrumental

variable ι(s) which has a correlation with ∇ωi
δ̂λ,K(s;ω∗

i ) but not δ̂λ,K(s;ω∗
i ). This

condition is obviously satisfied when ι(s) = φ(s) as well as LSTD(λ) (Bradtke

and Barto, 1996; Boyan, 2002). Instead of Eq.15, we aim to find the parameter

making the equation

∇̃ωi
ε(ωi) ≡ EM(θ){δ̂λ,K(s;ωi)φ(s) | dM(θ)(s−K)} + EM(θ){φ(s)}EM(θ){φ(s)}>ωi

(16)

be equal to zero, in order to compute the true parameter ω∗
i , so that ∇̃ωi

ε(ω∗
i ) = 0.

For the remainder of this paper, we denote the current state at time-step t by

st to clarify the time course on the actual Markov chain M(θ). In the proposed

LSD estimation algorithm, LSLSD(λ), the back-trace time-step K is set equal to

the time-step t of the current state st while the eligibility decay rate λ can be set

14



in [0, 1). That is,

δ̂λ,K(st;ωi) = gλ,i(st−1) + (zλ(st−1) − φ(st))
> ωi,

where gλ,i(st) =
∑t

k=0 λt−k∇θi
ln π(sk, ak; θ) and zλ(st) = (1−λ)

∑t
k=1 λt−kφ(sk)+

λtφ(s0). The expectations in Eq.16 are estimated without bias by (Bradtke and

Barto, 1996; Boyan, 2002)

lim
K→∞

EM(θ){δ̂λ,K(s;ωi)φ(s) | dM(θ)(s−K)}

' 1

T

T∑

t=1

φ(st){gλ,i(st−1) − (φ(st) − zλ(st−1))
>ωi}

= bT −AT ωi,

where bT ≡ 1
T

∑T
t=1 φ(st) gλ,i(st−1) and AT ≡ 1

T

∑T
t=1φ(st)(φ(st)−zλ(st−1))

>, and

EM(θ){φ(x)} ' 1

T + 1

T∑

t=0

φ(st)

≡ cT .

Therefore, by substituting these estimators into Eq.16, the estimate ω̂∗
i at time-

step T is computed as

bT −AT ω̂
∗
i + ctc

>
T ω̂

∗
i = 0

⇔ ω̂∗
i = (AT − cTc

>
T )−1 bT .

The LSLSD(λ) for the matrix parameter Ω̂∗ rather than ω̂∗
i is shown in Algorithm

1, where the notation := denotes the right-to-left substitution8.

8Incidentally, although there is calculation of an inverse matrix in the Algorithms, a pseudo-
inverse matrix may be used instead of direct calculation of the inverse matrix so as to secure
stability in numeric calculation.
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Algorithm 1
LSLSD(λ): Estimation for ∇θln dM(θ)(s)

Given:
• a policy π(s, a; θ) with a fixed θ,
• a feature vector function of state φ(s).

Initialize: λ ∈ [0, 1).
Set: c := φ(s0); z := φ(s0); g := 0; A := 0; B := 0.

for t = 0 to T − 1 do
c := c+ φ(st+1);
g := λg + ∇θln π(st, at; θ);
A := A+ φ(st+1)(φ(st+1) − z)>;
B := B + φ(st+1)g

>;
z := λz + (1 − λ)φ(st+1);

end for
Ω := (A− cc>/t)−1B;

Return: ∇̂θln dM(θ)(s) = Ωφ(s).

It is intriguing that LSLSD(λ) has a relationship to a model-based method, as

noted by Boyan (2002); Lagoudakis and Parr (2003) in the references for LSTD(λ)

and LSTDQ(λ), but LSLSD(λ) is concerned with the “backward” model B(θ)

instead of the forward model M(θ). This is due to the fact that the sufficient

statistics A in LSLSD(λ) can be regarded as a compressed “backward” model,

since A is equivalent to one of the sufficient statistics to estimate the backward

state transition probability qB(θ)(s−1 | s) when λ = 0 and the feature vector φ

corresponding to φ(1) = (1, 0, ..., 0); φ(2) = (0, 1, ..., 0); etc. We give the detail

explanation about it in Appendix.

4 Policy gradient algorithms with the LSD esti-

mate

We propose a PG algorithm as a straightforward application with the LSD esti-

mates in Section 4.1. In Section 4.2, we introduce baseline functions to reduce the

variace of the PG estimated by our PG algorithm.
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4.1 Policy update with the LSD estimate

Now let us define the PGRL algorithm based on the LSD estimate. The realization

of the estimation for ∇θln dM(θ)(s) by LSLSD(λ) directly leads to the following

estimate for the PG (Eq.3), due to its independence from the forgetting factor γ

for the value functions:

∇θη(θ) ' 1

T

T−1∑

t=0

(
∇θln π(st, at; θ) + ∇θln dM(θ)(st)

)
rt+1 (17)

' 1

T

T−1∑

t=0

(
∇θln π(st, at; θ) + ∇̂θln dM(θ)(st)

)
rt+1, (18)

where rt+1 is the immediate reward defined by the reward function r(st, at, st+1).

The policy parameter can then be updated through the stochastic gradient method

with an appropriate step-size α (Bertsekas and Tsitsiklis, 1996):9

θ := θ + α(∇θln π(st, at; θ) + ∇̂θln dM(θ)(st))rt+1.

LSLSD(λ)-PG without a baseline function is shown in Algorithm 2 as one of the

simplest realizations of PG algorithm that uses LSLSD(λ). In Algorithm 2, the

forgetting rate parameter β ∈ [0, 1) is introduced to discard the past estimates

given by old values of θ.

9Alternatively, θ can also be updated through the bath gradient method: θ := θ+α∇̂θR(θ).
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Algorithm 2
LSLSD(λ)-PG: Optimization for the policy
without baseline function

Given:
• a policy π(s, a; θ) with an adjustable θ,
• a feature vector function of state φ(s).

Initialize: θ, λ ∈ [0, 1), β ∈ [0, 1], αt.
Set: c := φ(s0); z = φ(s0); g := 0; A := 0; B := 0.

for t = 0 to T − 1 do
θ := θ + αt{∇θln π(st, at; θ) + Ω>φ(st)}rt+1;
c := βc+ φ(st+1);
g := βλg + ∇θln π(st, at; θ);
A := βA+ φ(st+1)(φ(st+1) − z)>;
B := βB + φ(st+1)g

>;
Ω := (A− cc>/‖c‖)−1B;
z := λz + (1 − λ)φ(st+1);

end for
Return: p(a | s; θ) = π(s, a; θ).

An other important topic for function approximation is the choice of the basis

function φ(s) of the approximator, particularly in continuous state problems.

For the PG algorithm, the objective of the LSD estimate is just to provide one

term of the PG estimate, such as
∑

s∈S

∑
a∈A dM(θ)(s)π(s, a; θ)∇θln dM(θ)(s)r̄(s, a),

but not to provide a precise estimate of the LSD ∇θln dM(θ)(s), where r̄(s, a) ≡
∑

s+1∈S
p(s+1 | s, a)r(s, a, s+1). Therefore, the following proposition would be

useful:

Proposition 3 Let the basis function of the LSD estimator be

φ(s) =
∑

a∈A

π(s, a; θ)r̄(s, a),

and then the function estimator, f(s;ω) = ω
∑

a∈A π(s, a; θ)r̄(s, a), can repre-

sent the second term of the PG,
∑

s∈S

∑
a∈A dM(θ)(s)π(s, a; θ)∇θln dM(θ)(s)r̄(s, a),
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where the adjustable parameter ω is a d dimensional vector:

∑

s∈S

∑

a∈A

dM(θ)(s)π(s, a; θ)r̄(s, a)∇θln dM(θ)(s) =
∑

s∈S

∑

a∈A

dM(θ)(s)π(s, a; θ)r̄(s, a)f(s;ω?),

where ω? minimizes the mean error, ε(ω) = 1
2

∑
s∈S dM(θ)(s){∇θln dM(θ)(s)−f(s;ω)}2.

Proof: The proposition follows directly from

∇ωε(ω?) =
∑

s∈S

∑

a∈A

dM(θ)(s)π(s, a; θ)r̄(s, a){∇θln dM(θ)(s) − f(s;ω?)} = 0.

�

4.2 Baseline function for variance reduction of policy gra-

dient estimates with LSD

As the variance of the PG estimates using the LSD, Eq.18, might be large, we

consider variance reduction using a baseline function for immediate reward r.

The following proposition provides the kind of functions that can be used as the

baseline function for PG estimation using the LSD10.

Proposition 4 With the following function of the state s and the following state

s+1 on M(θ),

ρ(s, s+1) = c + g(s) − g(s+1), (19)

where c and g(s) are an arbitrary constant and an arbitrary bounded function of

the state, respectively. The derivative of the average reward η(θ) with respect to

10Though a baseline might be a constant from a traditional perspective, we call the function
defined in Eq.19 a baseline function for Eq.3, because it does not add any bias to ∇θη(θ).
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the policy parameter θ (Eq.3), ∇θη(θ), is then transformed to

∇θη(θ) =
∑

s∈S

∑

a∈A

∑

s+1∈S

dM(θ)(s)π(s, a; θ)p(s+1 | s, a)

{
∇θln π(s, a; θ) + ∇θln dM(θ)(s)

}
r(s, a, s+1)

=
∑

s∈S

∑

a∈A

∑

s+1∈S

dM(θ)(s)π(s, a; θ)p(s+1 | s, a)

{
∇θln π(s, a; θ) + ∇θln dM(θ)(s)

}
{r(s, a, s+1) − ρ(s, s+1).} (20)

Proof: see Appendix.

Proposition 4 implies that any ρ(s, s+1) defined in Eq.19 can be used as the base-

line function of immediate reward r+1 ≡ r(s, a, s+1) for computing the PG, as in

Eq.20. Therefore, the PG can be estimated with the baseline function ρ(st, st+1)

with large time-steps T ,

∇θR(θ) ' 1

T

T−1∑

t=0

(
∇θln π(st, at; θ) + ∇θln dM(θ)(st)

)
{r(st, at, st+1) − ρ(st, st+1)}

≡ ∇̂θη(θ). (21)

In view of the form of the baseline function in Eq.19, we consider the following

linear fucntion as a representation of the baseline function,

ρ(s, s+1;υ) =



υu

υd




> 

φ(s) − φ(s+1)

1


 ≡ υ>ψ(s, s+1),

where υ and φ(s) are its coefficient parameter and feature vector function of state.

When we consider the trace of the covariance matrix of the PG estimates

∇̂θη(θ) as the variance of ∇̂θη(θ) and utilize the results of Greensmith et al.
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(2004), an upper bound of the variance is derived as

VarM(θ)

[
∇̂θη(θ)

]

≤ h
(

EM(θ)

[
‖∇θlnπ(s, a; θ) + ∇θln dM(θ)(s)‖2 {r(s, a, s+1) − ρ(s, s+1;υ)}2] )

≡ h
(
σ2

b∇θη(θ)
(υ)

)
.

where h(a) is a monotonically increasing function of its argument a. Accordingly,

since the optimal coefficient parameter υ∗ for the optimal (linear) baseline fucntion

b∗(s, s+1) ≡ ρ(s, s+1;υ
∗) satisfies

∂ σ2
b∇θη(θ)

(υ)

∂ υ

∣∣∣∣
υ=υ∗

= 0,

the optimal coefficient parameter is computed as11

υ∗ =EM(θ)

{
‖∇θln π(s, a; θ) + ∇θln dM(θ)(s)‖2ψ(s, s+1)ψ(s, s+1)

>
}−1

EM(θ)

{
‖∇θln π(s, a; θ) + ∇θln dM(θ)(s)‖2ψ(s, s+1)r(s, a, s+1)

}
. (22)

There is also an alternative considerable function for the baseline, termed the

‘decent’ baseline function b(s, s+1) ≡ ρ(s, s+1;υ
?), which satisfies the following

condition if the rank of EM(θ){ψ(s)ψ(s)>} is equal to the number of states,

EM(θ){b(s, s+1)) | s} = EM(θ){r(s, a, s+1)) | s} , ∀s, (23)

and has a statistical meaning. It comes from the fact that, under the condition of

Eq.23, this decent baseline function becomes a solution of Poisson’s equation:

υ?
d + υ?>

u φ(s) = EM(θ){r(s, a, s+1) − υ?
uφ(s+1) | s} ,

11The optimal baseline function is instantly computed with υ∗ as b∗(s, s+1) = υ∗>ψ(s, s+1).
Note that there is a similarity to the optimal baseline in Peters and Schaal (2006).

21



thus, υ?
d and υ?>

u φ(s) are equal to the average reward and the (discounted) value

function, respectively (Konda and Tsitsiklis, 2003). The parameter υ? can be

computed as12

υ? =EM(θ)

{
φ̃(s)ψ(s, s+1)

>
}−1

EM(θ)

{
φ̃(s)r(s, a, s+1)

}
, (24)

where ψ̃(s) ≡ (φ(s)>, 1)>(Ueno et al., 2008).

By Eq.22 and 24, both the coefficient parameters υ∗ and υ? for the optimal

b∗(s, s+1) and decent b(s, s+1) baseline functions can be estimated by least squares

and LSTD(λ), respectively, though the estimation for b∗ requires LSD estimates.

The LSLSD(λ)-PG algorithms with both baseline functions are shown in Algo-

rithm 3 and 4.

Algorithm 3
LSLSD(λ)-PG: Optimization for the policy
with ‘optimal’ baseline function b∗(s, s+1)

Given:
• a policy π(s, a; θ) with an adjustable θ,
• a feature vector function of state φ(s).

Define: ψ(st, st+1) ≡ [φ(st)
>−φ(st+1)

>, 1]>

Initialize: θ, λ ∈ [0, 1), β ∈ [0, 1], αt, βb ∈ [0, 1].
Set: c := φ(s0); z := φ(s0)/β; g := 0; A := 0; B := 0; X := 0; y := 0;
for t = 0 to T − 1 do
if t ≥ 1 then
θ := θ + αt{∇θln π(st, at; θ) + Ω>φ(st)}{rt+1 − ψ(st, st+1)

>X−1y};
end if
c := βc+ φ(st+1);
z := βλz + (1 − λ)φ(st);
g := βλg + ∇θln π(st, at; θ);
A := βA+ φ(st+1)(φ(st+1) − z)>;
B := βB + φ(st+1)g

>;
Ω := (A− cc>/‖c‖)−1B;
w := ‖∇θln π(st, at; θ) + Ω>φ(st)‖2;
X := βbX + wψ(st, st+1)ψ(st, st+1)

>;
y := βby + wψ(st, st+1)rt+1;

end for
Return: p(a | s; θ) = π(s, a; θ).

12υ? is given by solving the estimating function EM(θ)

{
ψ̃(s)>(r(s, a, s+1) − ρ(s, s+1;υ))

}
= 0.
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Algorithm 4
LSLSD(λ)-PG: Optimization for the policy
with ‘decent’ baseline function b?(s, s+1)

Given:
• a policy π(s, a; θ) with an adjustable θ,
• a feature vector function of state φ(s).

Define: ψ(st, st+1) ≡ [φ(st)
>−φ(st+1)

>, 1]>, φ̃(st) ≡ [φ(st)
>, 1]>.

Initialize: θ, λ ∈ [0, 1), β ∈ [0, 1], αt, λb ∈ [0, 1), βb ∈ [0, 1]
Set: c := φ(s0); z := φ(s0)/β; g := 0; A := 0; B := 0;

X := 0; y := 0; zb := 0
for t = 0 to T − 1 do
if t ≥ 1 then
θ := θ + αt{∇θln π(st, at; θ) + Ω>φ(st)}{rt+1 − ψ(st, st+1)

>X−1y};
end if
c := βc+ φ(st+1);
z := βλz + (1 − λ)φ(st);
g := βλg + ∇θln π(st, at; θ);
A := βA+ φ(st+1)(φ(st+1) − z)>;
B := βB + φ(st+1)g

>;
Ω := (A− cc>/‖c‖)−1B;

zb := βbλbzb + φ̃(st);
X := βbX + zbψ(st, st+1)

>;
y := βby + zbrt+1;

end for
Return: p(a | s; θ) = π(s, a; θ).

5 Numerical Experiments

We verify the performance of our proposed algorithms in stochastic “torus” MDPs

in Section 5.1. The proposed algorithms and other existing PG algorithms are also

applied to a pendulum balancing problem as a continuous state-action problem

in Section 5.2.

5.1 Torus |S|-state MDP

We tested the performance of our proposed algorithms in a stochastic “one-

dimensional torus grid-world” with a finite set of grids S = {1, .., |S|} and a

set of two possible actions A = {L, R}. This is a typical |S|-state MDP task
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where the state transition probabilities p are given by





p(s−1 | s, L) = qs

p(s | s, L) = 1−qs

2

p(s+1 | s, L) = 1−qs

2





p(s−1 | s, R) = 1−qs

2

p(s | s, R) = 1−qs

2

p(s+1 | s, R) = qs,

otherwise p = 0, where s = 0 and s = |S| (s = 1 and s = |S| + 1) are the

identical states and qs ∈ [0, 1] is a task-dependent constant. In this experiment,

a stochastic policy is a so-called Boltzmann or Gibbs policy represented by a

sigmoidal function

π(s, a = L; θ) = 1 − π(s, a = R; θ) =
1

1 + exp(θ>φ(s))
.

Here, all of the elements of the state-feature vectors φ(1), . . . ,φ(|S|) ∈ R|S| were

independently drawn from the Gaussian distribution N(µ = 0, σ2 = 1) for each

episode (simulation run). This was to assess how the parameterization of the

stochastic policy affected the performance of our algorithms. The state-feature

vectors φ(s) were also used as the basis function for the LSD estimate f(s;Ω),

cf. Eq.13.

[Figure 1 about here.]

5.1.1 Performance of LSLSD(λ) algorithm

First, we verified how precisely the LSLSD(λ) algorithm estimated ∇θln dM(θ)(s)

without regard to the setting of qs and the policy parameter θ. Each element

of θ and the task-dependent constant qs were randomly initialized according to

N(µ = 0, σ2 = 0.52) and U(a = 0.7, b = 1), respectively, where U(a = 0.7, b = 1) is

the uniform distribution over the interval of [a, b]. These values were fixed during

each episode.

Figure 1(A) shows a typical time course of the LSD estimates ∇̂θln dM(θ)(s) for
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|S|=3-state MDP, where nine different colors indicate all of the different elements

of the LSD, respectively. The solid lines denote the values estimated by LSLSD(0),

and the dotted lines denote the analytical solution of the LSD. This result shows

that the proposed algorithm, LSLSD(λ), can estimate the LSD ∇θln dM(θ)(s).

Besides this result, we have confirmed that the estimates by LSLSD(0) always

converged to the analytical solution for |S| = 3 as in Figure 1 (A).

Second, we investigated the effect of the eligibility decay rate λ using 7-

state MDPs. In order to evaluate the average performance over various set-

tings, we employed a “relative error” criterion that is defined by EM(θ){‖f(x;Ω)−

f(x;Ω?)‖2}/EM(θ){‖f(x;Ω?‖2}, where Ω? is the optimal parameter defined in

Proposition 3. Figure 1 (B) and (C) show the time courses of the relative error

averages over 200 episodes for λ = 0, 0.3, 0.9, and 1. The only difference between

these two figures was the number of elements of the feature-vectors φ(s). The

feature-vectors φ(s) ∈ R7 used in (B) were appropriate and sufficient to distin-

guish all of the different states, while the feature-vectors φ(s) ∈ R6 used in (C)

were inappropriate and insufficient. These results were consistent with the the-

oretical prospects. In particular, we could set λ arbitrarily in [0, 1) if the basis

function was appropriate (Figure 1 (B)), otherwise we would need to set λ close

but not equal to 1 (Figure 1 (C)).

5.1.2 Comparison to other PG methods

We compared the LSLSD(λ=0)-PG algorithm with the other PG algorithms for

3-state MDPs, concerned with the estimation of PG ∇θη(θ) and the optimization

of the policy parameter θ. The policy and the state transition probability were

set as θi ∼ N(0, 0.52) and qi ∼ U(0.95, 1) for every i ∈ {1, 2, 3}, respectively.

[Figure 2 about here.]

Figure 2 shows the reward setting in the MDP. There are two types of rewards:

“r = (±)2/Z(c)” and “r = (±)c/Z(c)”, where the variable c was initialized using
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the uniform distribution over [0.95, 1) for each episode (simulation run) and the

function Z(c) was the normalizing constant to assure maxθη(θ) = 113. Note that

the reward c defines the infimum value of γ to find the optimal policy: γ2 + γ >

2c
2−c

. Therefore, the setting of γ is important but difficult in this task. From the

performance baselines of the existing PG methods, we adopted two algorithms:

GPOMDP (Baxter and Bartlett, 2001) and Konda’s Actor-Critic (Konda and

Tsitsiklis, 2003). These algorithm used the baseline function being state value

estimates which were estimated by LSTD(λ) (Bradtke and Barto, 1996; Boyan,

2002; Yu and Bertsekas, 2006), while the original versions did not use the baseline

functions.

Figure 3 shows the results for the estimation of PG ∇θη(θ) from Eq.17. The

forgetting rate for the statistics and the eligibility decay rate were set as β = 1 and

λ = 0 for all of the algorithms (A) and (B) represent the mean and the standard

deviation of the angles between the estimates and the exact PG, respectively.

These results show that LSLSD-PG with estimating the optimal baseline function

b∗(s, s+1), termed LSLSD-PG:b∗(s, s+1), worked best to estimate the PG. LSLSD-

PG with whether b(s, s+1) or b∗(s, s+1) drastically improved the PG estimation

performance of LSLSD-PG without a baseline function, termed LSLSD-PG:None,

which was poorer than even GPOMPD:V (s), though LSLSD-PG:None worked

better than GPOMDP:None. Thus, we confirmed that these baseline functions

for LSLSD-PG could be essential.

[Figure 3 about here.]

Finally, we examined the optimization of the policy parameter θ, i.e. the

average reward, with these PG methods. In this experiment, the forgetting rate

and the eligibility decay rate were set as β = 0.99 and λ = 0. In order to

avoid the effect from poor estimations of the functions for the PG estimate, there

13The normalizing constant Z(c) was computed with the un-normalized reward function as
Z(c) = maxθη(θ) analytically.
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was a pre-learning period of 50 time-steps, where the learning rate α was set to

zero. It means that the policy remained unchanged in the first 50 time-steps.

Figure 4 shows the means and the standard deviations of the average rewards

at an earlier stage (500 time-step) and a later stage (104 time-step) over 1,000

independent simulations of various learning rates α, in order to give comparisons

among the PG algorithms for the optimization of the policy parameter. It was

confirmed that LSLSD-PG:b∗(s, s+1) worked best, except for the high learning

rate where the learning speed of b∗(s, s+1) could not properly follow the changes

of the policy rather than that of b(s, s+1). Figure 5 shows the time courses of the

average reward, where we chose appropriate learning rates for the PG algorithms

by drawing upon the previous results; α = 0.16 in LSLSD-PG:b(s, s+1), α =

0.08 in LSLSD-PG:b∗(s, s+1), α = 0.08 in Actor-Critic:V (s), and α = 0.007 in

GPOMDP:V (s). This result also indicates that our LSLSD-PG algorithm with

the optimal baseline function b∗(s, s+1) outperformed the other PG algorithms in

the sense of realizing both the highest average and the lowest standard deviation

of the average rewards.

[Figure 4 about here.]

[Figure 5 about here.]

5.2 Continuous state-action problem

The LSLSD(λ)-PG and the other existing PG algorithms were also applied to a

continuous state-action problem. This task is to balance a pendulum near the

top.

5.2.1 Interpretation of continuous state problem

Although this task obviously violates Assumption 1, on which the most policy

gradient algorithms including LSLSD(λ)-PG have also been based, it must be
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valuable to acquire insights of feasibility about PG algorithms. The reason comes

from the following interpretations: a continuous problem to (i) a numerous-state

MDP problem with some structures, or (ii) a partially observable MDP (POMDP)

problem with a belief states (Aberdeen, 2003). While the interpretation of (i) is

apparent, (ii) comes from the fact that, when the policy (or the baseline function)

in a continuous state problem is represented by a linear function with finite basis

functions that output bounded activation values, the activations biased to non-

negative values and normalized can be regarded as the belief states of finite-state

POMDP (Aberdeen, 2003).

5.2.2 Pendulum balancing problem

A pendulum balancing problem is a well known benchmark in continuous RL

problems (Peters et al., 2005; Morimura et al., 2005). The state s ≡ {x, ẋ}

comprised the angle and the angular speed of the pendulum, which were limited

in ranges [−π/6, π/6] and [−π/2, π/2], respectively, as shown in Figure 6. Its

dynamics was given by

ẍt+1 =
−µẋt + mgl sin(xt) + a

ml2
,

where a was the torque as an action selected by a learning agent. The physical

parameters were set m = l = 1, g = 9.8, and µ = 0.01. The reward function was

set as

r(st, at, st+1) ≡





−x2
t+1 − 0.5ẋ2

t+1 − 0.001a2
t − 1, if |xt+1| > π/6 or |ẋt+1| > π/2,

−x2
t+1 − 0.5ẋ2

t+1 − 0.001a2
t , otherwise.

The state st was initialized by the uniform distributions as xt ∼ U(−π/8, π/8) and

ẋt ∼ U(−1, 1), at the beginning of each episode or when the previous state st−1

deviated from the defined ranges, i.e., |xt−1| > π/6 or |ẋt−1| > π/2. The state was
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also initialized with the probability 0.01 at each time step, in order to explore the

state space more efficiently.

[Figure 6 about here.]

Since this problem has potentially an infinite number of states, we used a

normalized radial basis function (nRBF) model (Doya, 2000) for the policy and

(the part of) the baseline function:

π(s, a; θ) ≡ 1√
2π

exp

[
−

{
a − θ>φ(s)

}2

2

]
,

g(s;υ) ≡ θ>φ(s),

where θ and υ were the parameters of the policy and the baseline function. φ(s)

was the output of the nRBF model having 3× 3 RBFs as follows. The centers of

the RBFs were set as x ∈ {−π/9, 0, π/9} and ẋ ∈ {−π/3, 0, π/3}. The standard

deviations of the all RBFs were set as π/9 and π/3 for x and ẋ, respectively. The

policy parameter θ ∈ R9 was set to 0 at the beginning of each episode.

We applied our LSLSD(λ)-PGs with optimal baseline function b∗(s, s+1) and

decent baseline function b(s, s+1), (Konda’s) Actor-Critic:V (s), and GPOMDP:V (s),

as those in the previous experiment (Section 5.1.2). We set meta-parameters of

those algorithms appropriately: α = 0.2 and β = 0.9995 for the LSLSD-PGs and

Actor-Critic, and α = 0.04, γ = 0.99, and β = 0.9995 for the GPOMDP were

set. And λ of LSLSD-PGs with b∗(s, s+1) and b(s, s+1), Actor-Critic, and the

GPOMDP were set to 0.7, 0.5, 0.5, and 0. There was a pre-learning period of 103

time steps to avoid the effect from poor PG estimates, where α was set to zero.

Figure 7 shows the time courses of (A) the mean and (B) the standard de-

viations of the average rewards. We confirmed that the performance of LSLSD-

PG:b(s, s+1) was better than that of LSLSD-PG:b∗(s, s+1). Because its order in

the previous MDP problem (Figure 5) was opposite, it must be coursed by the

difficulty of the learning of the parameter υ∗ of the ‘optimal’ baseline function

29



b∗(s, s+1) in Eq.22 than υ? of the ‘decent’ one b(s, s+1) in Eq.24 with the nRBF

model. This distinction of the difficulties indicates that b∗(s, s+1) could be more

complex than b(s, s+1) and b∗(s, s+1) would need more representation capabil-

ity of the baseline function approximator. By the comparison of these forms in

Eq.22 and 24, these things would also come from the existence of the weights

‖∇θln π(s, a; θ) + ∇̂θln dM(θ)(s)‖2, i.e., the weights would often make the estima-

tion of b∗(s, s+1) with a function approximation difficult. We also confirmed from

Figure 7 that the performance of the LSLSD-PG:b(s, s+1) was slightly or much

better than Actor-Critic:V (s) or GPOMDP:V (s) algorithm.

[Figure 7 about here.]

6 Related works

There are two alternative methods that estimate the derivative of the (station-

ary) state distribution and that have already been proposed in Glynn (1991) or

Rubinstein (1991) and Ng et al. (2000). However, these are different from our

approach and have the following problems. The method in Glynn (1991) or Ru-

binstein (1991) is in operations research called “the likelihood ratio gradient” or

“the score function”. This method can be problematic as to how to design the

recurrence state, since the applicability is limited to regenerative processes (see

Baxter and Bartlett (2001) in detail). The other method proposed in Ng et al.

(2000) is not a direct estimation of the derivative of the state distribution but is

done via the estimation of the state distribution with density propagation. Ac-

cordingly, both these methods require knowledge of which state the agent is in,

while our method only needs to observe the feature vector of the state.

Meanwhile, there is an average reward PG algorithm (Tsitsiklis and Van Roy,

1999; Konda and Tsitsiklis, 2003; Sutton et al., 2000) that eliminates the use

of the forgetting rate by introducing a differential cost function as a solution of
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Poisson’s equation (also known as the average reward Bellman equation in RL).

However, since to date this is a unique PG framework proposed for maximizing

the average reward14, more studies of the average reward optimization would be

needed and significant. At least one possible advantage of the proposed framework

over the existing average reward PG method is that a closed-form solution of an

optimal baseline function for minimizing the variance bound of PG estimate can

be computed by least squares approaches, while such a solution in conventional PG

frameworks has not been explored and would be intractable (Greensmith et al.,

2004).

7 Concluding remarks

Our propositions show that the actual forward and virtual backward Markov

chains are closely related and have common properties. Utilizing these properties,

we proposed LSLSD(λ) as an estimation algorithm for the log stationary distri-

bution derivative (LSD), and LSLSD(λ)-PG as a PG algorithm utilizing the LSD

estimate. The experimental results also demonstrated that LSLSD(λ) worked for

λ ∈ [0, 1) and LSLSD(λ)-PG could learn regardless of the task’s requirements for

the value of γ to optimize the average reward. At the same time, it has been sug-

gested that there is theoretically no significant difference in performances between

the average-reward-based PG methods and the alternative PG methods with for-

getting rate γ for the value functions close to one (Tsitsiklis and Van Roy, 2002).

This might be true for the case of our proposed PG, LSLSD-PG, which would

mean that LSLSD-PG might not drastically improve the performances of the PG

methods with γ as does the algorithm proposed by Kimura and Kobayashi (1998)

when γ was set appropriately. However, it is noted that LSLSD-PG is free of the

setting of γ. In contrast, the learning performances of Konda’s actor-critic and the

14Although R-learning also maximizes the average reward, it is based on the value function
not the PG algorithm (Sutton and Barto, 1998).
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LSLSD-PG approaches do not seem to be the significantly different, as confirmed

in our numerical experiments. This would seem to come from the fact that the

LSLSD-PG is just a dual approach compared to Konda’s actor-critic approach. In

dyanamic programming (DP), Wang et al. (2007) formalize the dual approaches,

in which stationary distributions are maintained instead of the value functions

(primal approaches). On the other hand, in PGRL, LSLSD-PG approache main-

tains the LSD instead of the value functions, to estimate the policy gradient. As

considering the relationship between DP and PGRL, Konda’s actor-critic and our

LSLSD-PG approaches are corresponds to primal and dual approaches in PGRL,

respectively. Since Wang et al. (2008) also prove the advantage of the dual DP

approaches that the dual updates cannot diverge even with function approxima-

tions, the LSLSD-PG approaches might have such the advantages and thus more

theoritical and experimental work is necessary to further understand its effective-

ness.

Meanwhile, in our numerical experiments, LSLSD-PG approaches improved

the performances of GPOMDP drastically. It could come from the fact that

LSLSD-PG and GPOMD are fundamentally different approaches, because, GPOMDP

can be regarded as the method based on a fully model-free estimation of the PG,

while LSLSD-PG can be regarded as a method based on somewhat model-based

estimation of it. Although the latent difficulty of the PG estimation problem

does not change, LSLSD-PG utilizes a model information or a prior knowledge

of the model. Furthermore, since the policy is usually a parametric model and

the LSD approximator would be defined as a similar model to the policy model,

the utilization the policy model in LSLSD-PG must be useful. Accordingly, it

is an important future work to discuss and define a necessary and suffered basis

function of the (linear) LSD approximator based on the parameterization of the

policy.

On the ohter hand, the use of LSD estimation will open up new possibilities for
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the natural gradient learning (Kakade, 2001; Peters et al., 2005; Peters and Schaal,

2008; Morimura et al., 2008b). It enables us to compute a valid Riemannian metric

matrix G(θ) for an NPG, which is effective especially in the large-scale MDPs,

G(θ) := EM(θ)

{
∇θln π(s, a; θ)∇θln π(s, a; θ)> + ι∇θln dM(θ)(s)∇θln dM(θ)(s)>

}
,

where ι ∈ [0, 1] interpolates the natural policy gradient (λ = 0) and the natural

state-action gradient (λ = 1) (Morimura et al., 2008b).

In addition, the use of LSD estimation might offer novel methods for address-

ing the trade-offs between exploration and exploitation. This is because LSD gives

statistical information about how much a change of the state stationary distribu-

tion is caused by the perturbation of each element of each policy parameter, while

the stationary distribution having a low entropy would make the exploration hard.
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Appendix

7.1 Derivation of Eq.4

Using the relation between the forgetting (or discounted) state-value function

V π
γ (s) and the average reward η(θ) (Singh et al., 1994)

η(θ) = (1 − γ)
∑

s∈S

dM(θ)(s)V
π
γ (s),

37



the derivative of average reward with respect to θ is given by

∇θη(θ) = (1 − γ)
(∑

s∈S ∇θdM(θ)(s)V
π
γ (s) +

∑
s∈S dM(θ)(s)∇θV

π
γ (s)

)
, (25)

where ∇αAB implies (∇αA)B. The second term is modified as follows:

∑

s∈S

dM(θ)(s)∇θV
π
γ (s)

=
∑

s∈S

∑

a∈A

dM(θ)(s)∇θ{π(s, a; θ)Qπ
γ(s, a)}

=
∑

s∈S

∑

a∈A

dM(θ)(s)
[
∇θπ(s, a; θ)Qπ

γ(s, a) + π(s, a; θ)∇θQ
π
γ(s, a)

]

=
∑

s∈S

∑

a∈A

dM(θ)(s)
[
∇θπ(s, a; θ)Qπ

γ(s, a)

+ π(s, a; θ)∇θ

∑

s+1∈S

p(s+1 | s, a)
{
r(s, a, s+1) + γV π

γ (s+1)
}]

=
∑

s∈S

∑

a∈A

dM(θ)(s)∇θπ(s, a; θ)Qπ
γ(s, a) + γ

∑

s∈S

dM(θ)(s)∇θV
π
γ (s) (26)

=
1

1 − γ

∑

s∈S

∑

a∈A

dM(θ)(s)∇θπ(s, a; θ)Qπ
γ(s, a). (27)

Eq.26 is given by the property of stationary distribution (Eq.1). Substituting

Eq.27 in Eq.25, we can derive Eq.4:

∇η(θ) =
∑

s∈S

∑

a∈A

dM(θ)(s)π(s, a; θ)∇θln π(s, a; θ)Qπ
γ(s, a)

+ (1 − γ)
∑

s∈S

dM(θ)(s)∇θln dM(θ)(s)V π
γ (s). (4)

�

LSLSD(λ) as model-based-learning

>> not yet <<
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Proof of Proposition 4

If the following equation holds,

∑

s∈S

∑

a∈A

∑

s+1∈S

dM(θ)(s)π(s, a; θ)p(s+1 | s, a)
{
∇θlnπ(s, a; θ) + ∇θln dM(θ)(s)

}
ρ(s, s+1) = 0

(28)

then the transformation to Eq.20 obviously true. Because of Eq.19 and





∑
a∈A π(s, a; θ)∇θln π(s, a; θ) c = ∇θc = 0,

∑
s∈S dM(θ)(s)∇θln dM(θ)(s) c = ∇θc = 0,

we know that

∑

s∈S

∑

a∈A

∑

s+1∈S

dM(θ)(s)π(s, a; θ)p(s+1 | s, a)
{
∇θln π(s, a; θ) + ∇θln dM(θ)(s)

}
ρ(s, s+1)

=
∑

s∈S

∑

a∈A

∑

s+1∈S

dM(θ)(s)π(s, a; θ)p(s+1 | s, a)
{
∇θln π(s, a; θ) + ∇θln dM(θ)(s)

}
{g(s) − g(s+1)} .

(29)
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Since a time average is equivalent to a state-action space average in an ergodic

Markov chain M(θ) by Assumption 1, Eq.29 is transformed to

lim
T→∞

1

T

T−1∑

t=0

{
∇θln π(st, at; θ) + ∇θln dM(θ)(st)

}
{g(st) − g(st+1)}

= lim
T→∞

1

T

[ {
∇θln π(s0, a0; θ) + ∇θln dM(θ)(s0)

}
g(s0)

+
{
∇θln π(sT , aT ; θ) + ∇θln dM(θ)(sT )

}
g(sT )

+
T∑

t=1

{
−∇θln π(st−1, at−1; θ) −∇θln dM(θ)(st−1) + ∇θln π(st, at; θ) + ∇θln dM(θ)(st)

}
g(st)

]

=
∑

s−1∈S

∑

a−1∈A

∑

s∈S

∑

a∈A

dM(θ)(s−1)π(s−1, a−1; θ)p(s | s−1, a−1)π(s, a; θ)

{
−∇θln π(s−1, a−1; θ) −∇θln dM(θ)(s−1) + ∇θln π(s, a; θ) + ∇θln dM(θ)(s)

}
g(s)

=
∑

s−1∈S

∑

a−1∈A

∑

s∈S

dM(θ)(s−1)π(s−1, a−1; θ)p(s | s−1, a−1)

{
−∇θln π(s−1, a−1; θ) −∇θln dM(θ)(s) + ∇θln dM(θ)(s)

}
g(s)

=
∑

s∈S

dM(θ)(s)g(s)

[
EB(θ){∇θln π(s−1, a−1; θ) + ∇θln dM(θ)(s−1) | s} − ∇θln dM(θ)(s)

]
(30)

= 0, (31)

where Eq.8 (Proposition 2) and Eq.9 are used for the transformations to Eq.30

and Eq.31. Therefore, Eq.28 holds. �
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Figure 1: Performances of LSLSD(λ) for the estimation of the LSD ∇θln dM(θ)(s).
(A) A typical time course of LSD estimates in a 3-state MDP. (B, C) The relative
errors averaged over 200 episodes in 7-state MDPs for various λ: (B) with a proper
basis function φ(s) ∈ R7, (C) with an improper basis function φ(s) ∈ R6.
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Figure 2: Reward setting of 3-state MDPs used in our comparative studies. The
value of c is selected from the uniform distribution U[0.95, 1) for each episode.
Z(c) is a normalizing function to assure maxθη(θ) = 1.
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Figure 3: Comparison with various PG algorithms for the estimation of the PG
over 2,500 episodes: (A) and (B) are the mean and the standard deviation of the
angles between the estimates and the exact PG, respectively.
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Figure 4: Comparisons with various PG algorithms for the means of the average
rewards in the 3-state torus MDPs with 1,000 episodes about various learning
rates. (A) and (B) are the mean and the standard deviation of the average rewards
at 500 time-step, respectively. (C) and (D) are at 104 time-step.
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Figure 5: Comparison with various PG algorithms for the optimization of the
policy parameters with the appropriate learning rate in the 3-state torus MDPs
over 1,000 episodes.
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Figure 6: Pendulum balancing problem near the top ranges; x ∈ [−π/6, π/6] and
ẋ ∈ [−π/2, π/2].
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Figure 7: Comparison with various PG algorithms for the optimization of the
policy parameters in the pendulum balancing problem over 500 episodes.

49


